The experiment was carried out using a newly established clonal strain of C. socialis, APC12, genotyped by sequencing the LSU rDNA region ([21 ]). A non-axenic stock has been maintained in a culture chamber at 18 ± 2 °C, under sinusoidal illumination (12L:12D h photoperiod, ~ 90 μmol photons·m−2· s−1 daily average) in control medium made with artificial seawater at a salinity of 36 (Sea salts, Sigma-Aldrich; [21 ]) and with the following concentration of inorganic nutrients: 580 μM of NaNO3, 300 μM of Na2SiO3 and 29 μM of NaH2PO4. An exponentially growing culture was used to inoculate, at an initial cell density of ~ 3 × 103 cells·mL−1, three 5 L glass flasks filled with 3 L of control medium and three flasks filled with low nitrate medium (23 μM of NaNO3, 300 μM Na2SiO3, 29 μM NaH2PO4). Temperature and light conditions were monitored during the experiment with a HOBO Pendant® Temperature/Light Data Logger. To estimate cell concentration, 4 mL of sample were collected every day, fixed with 1.6% formaldehyde solution, and vegetative cells and spores were enumerated using a Sedgwick-Rafter chamber on a Zeiss Axiophot (ZEISS, Oberkochen, Germany) microscope at 400 × magnification. Total RNA was extracted from each replicate of the control in mid-exponential growth phase at day 2 (C2) and from the replicates growing in N deplete conditions on three consecutive days: before the formation of spores (T2), when spore formation started (T3), and when they reached > 75% of the whole population (T4) (Fig. 6). A total of ~ 1.2 × 107 cells were harvested from each replicate by filtration onto 1.2 μm pore size filters (RAWP04700 Millipore) and extracted with Trizol™ (Invitrogen) following manufacturer’s instructions. A DNase I (Qiagen) treatment was applied to remove gDNA contamination, and RNA was further purified using RNeasy Plant Mini Kit (Qiagen). All samples were quantified with Qubit® 2.0 Fluorometer (Invitrogen) and quality checked with an Agilent 2100 bioanalyzer (Agilent Technologies, California, USA) and a NanoDrop ND-1000 Spectrophotometer (Nanodrop Tecnologies Inc., Wilmington, USA). Samples were then pooled in equal concentrations of 100 ng·μl−1 for sequencing at the Molecular Service of Stazione Zoologica with an Ion Proton™ sequencer (Life Technologies, Carlsbad, USA) using an Ion P1 sequencing Kit v2, generating single-read sequences. Highly abundant ribosomal RNAs (rRNA) were removed from total RNA by positive polyA + selection. Raw reads coming from each replicate were collected in fastqc format files. One of the T3 replicates was removed from downstream analyses due to a sequencing error during library construction. The resulting raw reads were deposited in the Sequence Read Archive (SRA) partition at NCBI with the accession number PRJNA826817.
Schematic representation of the bioinformatic pipeline used in this study
Pelusi A., Ambrosino L., Miralto M., Chiusano M.L., Rogato A., Ferrante M.I, & Montresor M. (2023). Gene expression during the formation of resting spores induced by nitrogen starvation in the marine diatom Chaetoceros socialis. BMC Genomics, 24, 106.
Nitrate concentration: control medium (580 μM NaNO3) vs. low nitrate medium (23 μM NaNO3)
dependent variables
Cell concentration (vegetative cells and spores) over time
Transcriptome (gene expression) during different growth phases (mid-exponential, before spore formation, when spore formation started, when spores reached > 75% of the population)
control variables
Temperature: 18 ± 2 °C
Photoperiod: 12L:12D h
Light intensity: ~90 μmol photons·m−2·s−1 daily average
Salinity: 36
Other inorganic nutrients: 300 μM Na2SiO3, 29 μM NaH2PO4
controls
Positive control: Exponentially growing culture in control medium (high nitrate)
Negative control: Not mentioned
Annotations
Based on most similar protocols
Etiam vel ipsum. Morbi facilisis vestibulum nisl. Praesent cursus laoreet felis. Integer adipiscing pretium orci. Nulla facilisi. Quisque posuere bibendum purus. Nulla quam mauris, cursus eget, convallis ac, molestie non, enim. Aliquam congue. Quisque sagittis nonummy sapien. Proin molestie sem vitae urna. Maecenas lorem.
As authors may omit details in methods from publication, our AI will look for missing critical information across the 5 most similar protocols.
About PubCompare
Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.
We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.
However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.
Ready to
get started?
Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required