DNA labelling specificity was quantified 2 h after adding the different dyes by automated image analysis using the open-source CellCognition software20 (link). Cell nuclei were automatically segmented in five consecutive image frames per experimental condition by local adaptive thresholding in the H2B-mCherry channel. Mitotic cells and dead cells were excluded from analysis based on automated classification by supervised machine learning. The mean fluorescence was then measured in the far-red channel. To calculate the nucleo/cytoplasmic fluorescence ratio, a cytoplasmic region was defined for each cell as a 5 pixel wide rim around the nuclear segmentation mask, spaced at a distance of 1 pixel. Extracellular background fluorescence was manually measured and subtracted from intracellular mean fluorescence measurements. The nucleo/cytoplasmic fluorescence ratio was first calculated for individual cells to derive the mean nucleo/cytoplasmic fluorescence ratio of the cell population. The mean and s.e.m. was then calculated for each dye condition based on three independent biological replicates. Fluorescence cross-talk from the H2B-mCherry channel was very low (<2% of the signal detected in 500 nM SiR–Hoechst-treated cells), as assessed by measuring fluorescence intensity in dimethylsulfoxide-treated control cells.
Automated Cell Proliferation and Mitosis Analysis
DNA labelling specificity was quantified 2 h after adding the different dyes by automated image analysis using the open-source CellCognition software20 (link). Cell nuclei were automatically segmented in five consecutive image frames per experimental condition by local adaptive thresholding in the H2B-mCherry channel. Mitotic cells and dead cells were excluded from analysis based on automated classification by supervised machine learning. The mean fluorescence was then measured in the far-red channel. To calculate the nucleo/cytoplasmic fluorescence ratio, a cytoplasmic region was defined for each cell as a 5 pixel wide rim around the nuclear segmentation mask, spaced at a distance of 1 pixel. Extracellular background fluorescence was manually measured and subtracted from intracellular mean fluorescence measurements. The nucleo/cytoplasmic fluorescence ratio was first calculated for individual cells to derive the mean nucleo/cytoplasmic fluorescence ratio of the cell population. The mean and s.e.m. was then calculated for each dye condition based on three independent biological replicates. Fluorescence cross-talk from the H2B-mCherry channel was very low (<2% of the signal detected in 500 nM SiR–Hoechst-treated cells), as assessed by measuring fluorescence intensity in dimethylsulfoxide-treated control cells.
Corresponding Organization : Vienna Biocenter
Other organizations : Uppsala University, NCCR Chemical Biology - Visualisation and Control of Biological Processes Using Chemistry, University of Geneva, Max Planck Institute for Biophysical Chemistry
Protocol cited in 5 other protocols
Variable analysis
- Different dyes
- DNA labelling specificity
- Nucleo/cytoplasmic fluorescence ratio
- Proliferation index
- Mitotic duration
- Chromosome missegregation
- Dimethylsulfoxide-treated control cells
- Mitotic cells and dead cells (excluded from analysis)
Annotations
Based on most similar protocols
As authors may omit details in methods from publication, our AI will look for missing critical information across the 5 most similar protocols.
About PubCompare
Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.
We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.
However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.
Ready to get started?
Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required
Revolutionizing how scientists
search and build protocols!