We applied metrological pre-processing to each of the bone surface scans to reduce the nominal form by filtering long-scale components of the surface (waviness) from short-scale components (surface roughness and noise) following ISO 25178 recommendations for technical surface scans. Translated to bone as a biological surface, long-scale components are bone curvature, form, and shape, while short-scale components are wear traces and measurement noise. Following successful applications and testing of different pre-processing techniques in tooth wear studies [45 (link), 78 ], we use a similar combination of a filter and an operator to reduce measurement noise applying a low pass S-Filter and a F-Operator as form removal. We applied the following procedures in Mountains Map Premium v. 7.4.8076 Analysis software by Digital Surf (Besançon, France) using operators with the following specifications (in brackets): leveling (least square method), mirroring (the y- and z-axes) in case of molds, and outlier removal (outlier removal method: removal of isolated outliers and those around edges, with normal strength, and fill in of holes <225 points, removal of noise), fill in of non-measured points (smoothing method calculated from neighbors). Each non-measured point is replaced by a value obtained as compared to the neighboring valid points. The F-operator remove form was set using a polynomial of second order (polynomial of degree 2).
From the meshed axiomatic 3D models, we chose the following four of the 30 ISO 25178 parameters for statistical modeling: arithmetic mean height [Sa], autocorrelation length [Sal], arithmetic mean peak curvature [Spc], and upper material ratio [Smr1] (Fig 4). 3D surface texture parameters were used to obtain an overall understanding of the surfaces in all experimental states and were chosen to be representative for the four main parameter groups of the ISO 25178 as well as potentially diagnostic of differences in surface features. We chose Sa as a robust representative for the height parameters indicating the statistical distribution of heights along the z-axis of a surface, Sal as representative for the spatial parameters indicating periodicity and directionality of a surface, Spc as representative for feature parameters indicating the geometry of particular segments of a surface (e.g., peaks), and Smr1 as representative for the functional parameters indicating bearing function calculated from the material ratio curve. Initially, we checked all 30 ISO 25178 parameters. However, since many of the possible parameters are correlated, or even mathematically related to one another, we chose four parameters that were relatively independent, based on pairwise scatter plots.
Free full text: Click here