In a series of simulations we varied the threshold TPWnt for a reference crypt (see
For a given position of TPWnt the steady state cell production of a crypt still depends on cell interaction parameters as well as internal parameters regulating fate decisions. For example the turnover is decreased as a result of an increase of the cell-cell interaction strength εc, an increase of the sensitivity to contact inhibition Vp or a decrease of the Wnt-activity threshold TDWnt. We used TDWnt, together with FAother and ηBM, to fit the turnover the results of the BrdU labelling experiments.
This was most efficient provided that the average apoptosis rate in the crypt was smaller than about 5% per day. Such low apoptosis rates were ensured assuming a high cell-knot interaction constant εk>5 nNm for all cells. Note that a migration force FAother>0 was required to fit the BrdU labelling data.
Steady state cell patterning also underlies a complex regulation as seen from the organisation of the Paneth cell population. For a given crypt geometry and Wnt-activity threshold TPWnt the sum of undifferentiated and Paneth cells is approximately fixed. Thereby, the number of Paneth cells depends sensitively on the cell-knot interaction strength εkpaneth, the migration force for Paneth cells FAPaneth and the Notch-activation strength LPPaneth. Stable Paneth cell adhesion to the BM over their life time tp required εkpaneth≥35 nN defining a constraint to this parameter. Moreover, a minimum ‘migration force’ FAPaneth of about 7nN is required to ensure that Paneth cells remain confined at the crypt bottom. Thus, we adjusted the number of Paneth cells using LPPaneth (