While the classification predictions produced by conv-nets were remarkably accurate, we found that they required further refinement to produce binary segmentation masks. As opposed to using the raw class scores for each pixel as the input for refinement, we instead use the softmax normalized score , which we loosely interpret as the probability deduced by the conv-net that the pixel in question belongs to that particular class. For bacterial cells, we found that thresholding of the softmax normalized score for the cell interior class with a value of 0.6 was sufficient to produce accurate masks. For nuclei, we found that thresholding with a value of 0.5–0.75 in a similar fashion to bacteria worked well in most cases, with adaptive thresholding of the softmax normalized cell interior score being used for images with very dim nuclei. For mammalian cells, the conv-net prediction in combination with the nuclear marker was used to guide an active contour algorithm to further refine the segmentation[52 ]. Training error and segmentation results for E. coli, MCF10A, NIH-3T3, and HeLa-S3 cells are shown in
Convolutional neural networks for image segmentation
While the classification predictions produced by conv-nets were remarkably accurate, we found that they required further refinement to produce binary segmentation masks. As opposed to using the raw class scores for each pixel as the input for refinement, we instead use the softmax normalized score , which we loosely interpret as the probability deduced by the conv-net that the pixel in question belongs to that particular class. For bacterial cells, we found that thresholding of the softmax normalized score for the cell interior class with a value of 0.6 was sufficient to produce accurate masks. For nuclei, we found that thresholding with a value of 0.5–0.75 in a similar fashion to bacteria worked well in most cases, with adaptive thresholding of the softmax normalized cell interior score being used for images with very dim nuclei. For mammalian cells, the conv-net prediction in combination with the nuclear marker was used to guide an active contour algorithm to further refine the segmentation[52 ]. Training error and segmentation results for E. coli, MCF10A, NIH-3T3, and HeLa-S3 cells are shown in
Corresponding Organization : Stanford University
Protocol cited in 24 other protocols
Variable analysis
- Trained conv-net applied to entire image to produce pixel-level classification predictions
- Segmentation masks for new images
- Model parallelism (averaging results of 5 trained networks)
- Positive control: Not explicitly mentioned.
- Negative control: Not explicitly mentioned.
Annotations
Based on most similar protocols
As authors may omit details in methods from publication, our AI will look for missing critical information across the 5 most similar protocols.
About PubCompare
Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.
We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.
However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.
Ready to get started?
Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required
Revolutionizing how scientists
search and build protocols!