Six trained research midwives abstracted data from obstetric medical records. There was no between-midwife variation in mean values of abstracted data and repeat data entry checks demonstrated error rates consistently < 1%. Obstetric data abstractions included every measurement of weight entered into the medical records and the corresponding gestational age and date. To allocate women to IOM categories (
Maternal age, parity, mode of delivery (caesarean section / vaginal delivery) and the child’s sex were obtained from the obstetric records. Based on questionnaire responses, the highest parental occupation was used to allocate the children to family social class groups (classes I (professional / managerial) to V (unskilled manual workers)). Maternal smoking in pregnancy, categorised as - never smoked; smoked before pregnancy or in the first trimester and then stopped; smoked throughout pregnancy – was obtained from questionnaire responses.
Offspring weight and height were measured in light clothing, without shoes. Weight was measured to the nearest 0.1kg using Tanita scales. Height was measured to the nearest 0.1cm using a Harpenden stadiometer. WC was measured to the nearest 1mm at the mid-point between the lower ribs and the pelvic bone with a flexible tape and with the child breathing normally. Fat mass was assessed using dual energy X-ray densitometry (DXA). We examined BMI, WC and fat mass as continuously measured variables. We also examined binary outcomes of overweight/obese (BMI) and abdominally obese (WC) using age- and sex-specific thresholds for both child BMI (International Obesity Task Force) 14 (link) and WC (>=90th percentile15 (link) based on WC percentile curves derived for British children16 (link)).
Blood pressure was measured using a Dinamap 9301 Vital Signs Monitor with the child rested and seated and their arm supported at chest level on a table. Two readings of systolic and diastolic blood pressure (SBP and DBP) were recorded and the mean of each was used. Non-fasting blood samples were taken using standard procedures with samples immediately spun and frozen at −80°C. The measurements were assayed in plasma in 2008 after a median of 7.5 years in storage with no previous freeze-thaw cycles during this period. Lipids (total cholesterol, triglycerides and HDL-C) were performed by modification of the standard Lipid Research Clinics Protocol using enzymatic reagents for lipid determinations. Apolipoprotein (apo) A1 and apoB were measured by immunoturbidimetric assays (Hitachi/Roche). Leptin was measured by an in house ELISA validated against commercial methods. Adiponectin and high sensitivity IL-6 were measured by ELISA (R&D systems) and CRP was measured by automated particle-enhanced immunoturbidimetric assay (Roche UK, Welwyn Garden City, UK). All assay coefficients of variation were <5%. Non-HDLc was calculated as total cholesterol minus HDLc.
All pregnancy weight measurements (median number of repeat measurements per woman: 10,range: 1, 17) were used to develop a linear spline multilevel model (with two levels: woman and measurement occasion) relating weight (outcome) to gestational age (exposure). Full details of this statistical modelling are provided in
Associations of offspring outcomes with the IOM categories and with the estimates of maternal pre-pregnancy weight and early-, mid- and late-pregnancy GWG were undertaken using linear regression. We explored the linearity of the relationships between all outcomes and the exposures using fractional polynomials. Where there was evidence of non-linearity, we used spline models to approximate the relationship. In the basic model we adjusted for offspring gender and age at the time of outcome measurement and for all models with fat mass for height and height-squared. We considered the following potential confounders: pre-pregnancy weight and GWG in the previous period (for the multilevel model exposures only), gestational age (for IOM categories only, since this is taken account of in the multilevel models), maternal age, parity, pregnancy smoking, social class, and mode of delivery. In order to examine whether effects were mediated by birthweight we adjusted for it and for non-adiposity outcomes we also examined potential mediation by adiposity. Triglycerides, leptin, CRP and IL-6 were log transformed in order to normalize their distributions. The resultant regression coefficients were exponentiated to give a ratio of geometric means per change in exposure. Results are presented jointly for mothers of female and male offspring as associations were all very similar in both genders.