2. Molecular docking simulation packages: Native ligands were docked to their corresponding target proteins using eHiTS, GOLD, and AutoDock VINA (
3. Application of machine learning systems: Binding modes generated by the three docking tools were re-scored by machine learning system A, and only the three top-score candidates in each set were retained. Subsequently, machine learning system B assessed the three top-score candidates and identified the most predictive one. Modeling exercises of the machine learning systems A and B were conducted using the R statistical package. The Random Forest algorithm was applied to build machine learning system A, which was implemented in “randomForest” (Breiman and Cutler's random forests for classification and regression) module. For machine learning system B, the multinomial logistic regression of “nnet” (Feed-forward Neural Networks and Multinomial Log-Linear Models) and “MASS” (Modern Applied Statistics with S. Fourth Edition) modules was utilized.
4. Re-docking result: The Pearson correlation coefficient between the predicted docking scores and the experimental binding affinities was calculated using R to determine the predictiveness of the screening approach.