Sequence names were truncated to a unique identifier. Information about the database origin of each sequence was added to the unique identifier (i.e. OS-TA, OSEST, OSGEN for O. sativa TA, EST or genomic sequences respectively). Nucleotide sequences were translated into protein sequences in all six reading frames (universal code), and frame information was appended to the sequence identifier (e.g. "_+2"). The translated nucleotide sequences and modified protein sequences derived from genomic data were combined into a single file and formatted using Formatdb (options: -p T and -o T) [43 (link)]. The resulting database contained 3,631,558 sequences. To determine whether CLE sequences were specific to plants, a separate search was based on the non-redundant protein database (NCBI nr, version 15 June 2006.).
Construction of a Comprehensive Plant Protein Database
Sequence names were truncated to a unique identifier. Information about the database origin of each sequence was added to the unique identifier (i.e. OS-TA, OSEST, OSGEN for O. sativa TA, EST or genomic sequences respectively). Nucleotide sequences were translated into protein sequences in all six reading frames (universal code), and frame information was appended to the sequence identifier (e.g. "_+2"). The translated nucleotide sequences and modified protein sequences derived from genomic data were combined into a single file and formatted using Formatdb (options: -p T and -o T) [43 (link)]. The resulting database contained 3,631,558 sequences. To determine whether CLE sequences were specific to plants, a separate search was based on the non-redundant protein database (NCBI nr, version 15 June 2006.).
Corresponding Organization :
Other organizations : Australian Research Council, Australian National University, University of Queensland
Protocol cited in 13 other protocols
Variable analysis
- Combining several sequence resources to form a custom, redundant protein database
- Whether CLE sequences were specific to plants
- The non-redundant protein database (NCBI nr, version 15 June 2006) used as a separate search to determine if CLE sequences were plant-specific
Annotations
Based on most similar protocols
As authors may omit details in methods from publication, our AI will look for missing critical information across the 5 most similar protocols.
About PubCompare
Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.
We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.
However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.
Ready to get started?
Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required
Revolutionizing how scientists
search and build protocols!