Example 4

The ability of certain, active HAO1-targeting DsiRNAs to reduce HAO1 levels within the liver of a mouse was examined. DsiRNAs employed in the study were: HAO1-1105, HAO1-1171, HAO1-1221, HAO1-1272, HAO1-1273, HAO1-1316, HAO1-1378 and HAO1-1379, each of which were synthesized with passenger (sense) strand modification pattern “SM107” and guide (antisense) strand modification pattern “M48” (patterns described above). To perform the study, a primary hyperoxaluria model was generated through oral gavage of 0.25 mL of 0.5 M glycolate to cause urine oxalate accumulation in C57BL/6 female mice. Animals were randomized and assigned to groups based on body weight. Intravenous dosing of animals with lipid nanoparticles (LNPs; here, an LNP formulation named EnCore-2345 was employed) containing 1 mg/kg or 0.1 mg/kg of DsiRNA was initiated on day 0. Dosing continued BIW for a total of three doses in mice prior to glycolate challenge. Four hour and 24 h urine samples were collected after glycolate challenge for assessment of oxalate/creatinine levels (see FIG. 4 for experimental flow chart). Animals were then sacrificed at 24 hrs after glycolate challenge. Liver was dissected and weighed, and HAO1 levels were assessed using RT-qPCR, ViewRNA, western blot for glycolate oxidase and/or glycolate oxidase immunohistochemistry (ViewRNA, western blot for glycolate oxidase and glycolate oxidase immunohistochemistry data not shown). Serum samples were also subjected to ELISA for detection of glycolate oxidase (data not shown). Notably, all eight DsiRNAs showed robust knockdown of HAO1 when administered at 1 mg/kg (FIG. 5). At least two (HAO1-1171 and HAO1-1378) of the eight DsiRNAs tested in vivo also showed robust knockdown of HAO1 in all treated animals when administered at 0.1 mg/kg. As shown in FIG. 5, administration of the HAO1-1171-M107/M48 DsiRNA at 0.1 mg/kg caused an average knockdown of 70% in liver tissue of treated mice, while administration at 1 mg/kg produced an average knockdown of 97% in liver tissue of treated mice. Similarly, administration of the HAO1-1378-M107/M48 DsiRNA at 0.1 mg/kg caused an average knockdown of 53% in liver tissue of treated mice, while administration at 1 mg/kg produced an average knockdown of 97% in liver tissue of treated mice. HAO-1171-induced knockdown at both 0.1 mg/kg and 1 mg/kg was further confirmed by ViewRNA in situ hybridization assays.

Robust levels of HAO1 mRNA knockdown were observed in liver tissue of mice treated with 1 mg/kg amounts of HAO1-targeting DsiRNAs HAO1-1171 and HAO1-1378 (FIG. 6 and data not shown), and even 0.1 mg/kg amounts of these HAO1-targeting DsiRNAs produced robust HAO1 knockdown. As shown in FIG. 6, single dose HAO1-1171 DsiRNA treatment achieved durable HAO1 mRNA target knockdown for at least 120 hours post-administration in the liver of treated animals. While robust HAO1 knockdown was achieved in liver, initial glycolate challenge experiments yielded inconclusive phenotypic results (data not shown).

In additional in vivo experiments, both HAO1 and oxalate levels were assessed in both control- and DsiRNA-treated genetically engineered PH1 model mice.

Free full text: Click here