Example 3

The ratio of the nanoparticles to the surface-active agent is an important factor as it controls the zeta potential of the nanoparticles and the time scale of the aggregation process. For zeta potential higher than ±30, the aggregation time scale is extremely long and may be infinite. As the zeta potential get s closer to the zero, the time scale of aggregations decreased significantly and optimally instantaneous at the zero.

FIG. 14 shows the gelation time of IL13, AB13, and NaOleate with Alu C and A-200. As shown, the gelation time can be controlled through these different combinations of formulations. The gelation is varying from instantaneous to 24 hrs. FIG. 15 shows the gelation time of IL22, AB22, and SDBS with Alu C and A-200. The gelation time is even extended to 35 hrs.

This wide range of gelation times may be made use of in different applications when these materials are emplaced in a porous medium, particularly when used in subterranean formations to assist in hydrocarbon recovery techniques. For example, materials with relatively long gelation times may be used post-CHOPS reservoirs to plug the wormholes. While materials with relatively short gelation times may be used for near-wellbore applications, such as water shutoff or acid diversion.

Free full text: Click here