Having performed a preliminary assessment that revealed very little intra-phenotypic morphological variability between subjects, we proceeded by analyzing the first 10 IBA-IR cells that corresponded unambiguously to the above-described features corresponding to each phenotype. We analyzed a total 40 gray matter and 40 white matter microglia, with 10 cells/phenotype being randomly selected and reconstructed across subjects. On average, 7.4 ± 1.0 cells per subject were traced, reconstructed, and analyzed. Cells were sampled throughout the cortical thickness, but since no noticeable difference was seen between layers, laminar distributions were not recorded. Cells were traced, reconstructed, and their morphometric features characterized as previously described [44 (link)]. In brief, under a 100× (Numerical aperture 1.4) oil immersion objective (Olympus BX51 light microscope, Olympus America Inc., Richmond Hill, On, Canada) processes were analyzed in three dimensions within single sections using a computer-based tracing system (Neurolucida v. 8.10.2, MBF Bioscience, Williston, VT, USA), whereas cell bodies were analyzed in two dimensions (area at its largest cross-sectional diameter). Cell body area, maximum and minimum feret diameter, roundness as well as number, length, branching points (nodes and ends) and volume of processes were measured for each IBA1-IR cell. A spherical cell body is calculated by the ratio between feret diameters. Feret is defined as the distance between two parallel lines drawn tangentially to the cell body; the minimum feret is the shortest chord drawn in the cell body and the maximum Feret is the longest, as shown in the blue and purple lines respectively in Figure
Microglial Morphological Phenotypes in Human dACC
Having performed a preliminary assessment that revealed very little intra-phenotypic morphological variability between subjects, we proceeded by analyzing the first 10 IBA-IR cells that corresponded unambiguously to the above-described features corresponding to each phenotype. We analyzed a total 40 gray matter and 40 white matter microglia, with 10 cells/phenotype being randomly selected and reconstructed across subjects. On average, 7.4 ± 1.0 cells per subject were traced, reconstructed, and analyzed. Cells were sampled throughout the cortical thickness, but since no noticeable difference was seen between layers, laminar distributions were not recorded. Cells were traced, reconstructed, and their morphometric features characterized as previously described [44 (link)]. In brief, under a 100× (Numerical aperture 1.4) oil immersion objective (Olympus BX51 light microscope, Olympus America Inc., Richmond Hill, On, Canada) processes were analyzed in three dimensions within single sections using a computer-based tracing system (Neurolucida v. 8.10.2, MBF Bioscience, Williston, VT, USA), whereas cell bodies were analyzed in two dimensions (area at its largest cross-sectional diameter). Cell body area, maximum and minimum feret diameter, roundness as well as number, length, branching points (nodes and ends) and volume of processes were measured for each IBA1-IR cell. A spherical cell body is calculated by the ratio between feret diameters. Feret is defined as the distance between two parallel lines drawn tangentially to the cell body; the minimum feret is the shortest chord drawn in the cell body and the maximum Feret is the longest, as shown in the blue and purple lines respectively in Figure
Protocol cited in 12 other protocols
Variable analysis
- Morphological phenotypes of microglia (ramified, primed, reactive, and amoeboid)
- Cell body area
- Maximum and minimum feret diameter
- Roundness
- Number of processes
- Length of processes
- Branching points (nodes and ends) of processes
- Volume of processes
- Cortical layers, as the authors note that "since no noticeable difference was seen between layers, laminar distributions were not recorded"
- Sampling technique, as the authors state they "analyzed the first 10 IBA-IR cells that corresponded unambiguously to the above-described features corresponding to each phenotype" and "Cells were sampled throughout the cortical thickness"
- Not specified
- Not specified
Annotations
Based on most similar protocols
As authors may omit details in methods from publication, our AI will look for missing critical information across the 5 most similar protocols.
About PubCompare
Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.
We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.
However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.
Ready to get started?
Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required
Revolutionizing how scientists
search and build protocols!