Example 6

As a result of its ability to elevate the intracellular ratio of NAD+ to NADH, LbNOX is also capable of potentiating gluconeogenesis in mammalian cells (e.g., human cells). The first step of gluconeogenesis from lactate is the conversion of lactate to pyruvate, which requires cytosolic NAD+. Gluconeogenesis from lactate was significantly increased when primary hepatocytes were transduced with either LbNOX or mitoLbNOX-containing adenovirus (FIG. 3D). The effect of LbNOX and mitoLbNOX on gluconeogenesis was commensurate to their effect on lactate/pyruvate ratio (FIG. 3B), suggesting that cytoplasmic and not mitochondrial NAD+/NADH is important for regulation of gluconeogenesis rate from lactate. These examples demonstrate the ability of water-forming NADH oxidases to control the rate of gluconeogenesis upon introducing these enzymes to mammalian cells.

Free full text: Click here