Amino acid concentrations in pure co-cultures of MK-D1 and Methanogenium were quantified through a previously described method63 (link),64 . In brief, we processed the acid hydrolysis with 6 M HCl (110 °C, 12 h) for the culture liquid samples after filtration using a 0.2-μm pore-size polytetrafluoroethylene filter unit (Millipore). The amino acid fraction was derivatized to N-pivaloyl iso-propyl esters before GC using a 6890N GC instrument connected to the nitrogen phosphorus and flame ionization detectors (Agilent Technologies). For cross-validation of qualitative identification of amino acids, GC–MS on the 7890 system (Agilent Technologies) was used61 (link).
Methane and CO2 Isotopic Analysis and Amino Acid Quantification
Amino acid concentrations in pure co-cultures of MK-D1 and Methanogenium were quantified through a previously described method63 (link),64 . In brief, we processed the acid hydrolysis with 6 M HCl (110 °C, 12 h) for the culture liquid samples after filtration using a 0.2-μm pore-size polytetrafluoroethylene filter unit (Millipore). The amino acid fraction was derivatized to N-pivaloyl iso-propyl esters before GC using a 6890N GC instrument connected to the nitrogen phosphorus and flame ionization detectors (Agilent Technologies). For cross-validation of qualitative identification of amino acids, GC–MS on the 7890 system (Agilent Technologies) was used61 (link).
Corresponding Organization : National Institute of Advanced Industrial Science and Technology
Other organizations : Kōchi University, National Institute for Physiological Sciences, Nagaoka University of Technology, National Institutes of Natural Sciences
Variable analysis
- Stable carbon isotope compositions of methane and CO2 in the sampled gas phase
- Methane concentrations
- Amino acid concentrations in pure co-cultures of MK-D1 and Methanogenium
- Nitrogen as a carrier gas for GC analysis of methane concentrations
- Acid hydrolysis with 6 M HCl (110 °C, 12 h) for the culture liquid samples after filtration using a 0.2-μm pore-size polytetrafluoroethylene filter unit (Millipore) for amino acid analysis
- Positive control: Not explicitly mentioned
- Negative control: Not explicitly mentioned
Annotations
Based on most similar protocols
As authors may omit details in methods from publication, our AI will look for missing critical information across the 5 most similar protocols.
About PubCompare
Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.
We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.
However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.
Ready to get started?
Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required
Revolutionizing how scientists
search and build protocols!