For tests with a mixture, at least 5 doses of the mixture that bracketed 5–95% mortality were tested concurrently with experiments with at least 5 doses of individual mixture components. As before, 60–135 bees of each species were tested depending on species' availability. To test the hypothesis of independent joint action of fenbuconazole with acetamiprid or imidacloprid, we used the computer program PoloMix [49] . Assuming independent joint action of two mixture chemicals, test subjects can die of three possible causes. The first cause is natural mortality, with a probability po (a constant). The other two causes of mortality are the probabilities of mortalities for chemical 1 or chemical 2. For the first chemical, the probability of response (p1) is a function of dose D1. Usually, the probit or logit of dose X of chemical 1 is log(D1) (i.e., X1 = log[D1]). For the second chemical, the probability of response (p2) is a function of dose D2. If these three causes of mortality are independent, the probability of death (p) is p = p0+(1−p0)p1+(1−p0)(1−p1) p2. When each “+” sign means “or” and each product means “and,” this equation means that the total probability of death equals death from natural causes (p0), or no death from natural causes (1−p0) and death from the first chemical [e.g., (1−p0)p1], or no death from natural causes or from the first chemical [i.e., (1−p0)(1−p1)], but death from the second chemical [i.e., (1−p0)(1−p1) p2]. The χ2 statistic produced by PoloMix [49] was used to test the hypothesis of independent joint action. This test statistic is calculated by obtaining an estimate for the probability of mortality (p) for several dose levels of the two components and then comparing (the estimate of p) with the observed proportion killed at the corresponding dose levels. The three contributions to p are estimated separately. First, p0 is calculated as the proportional mortality observed in the control group. Next, p1 and p2 are estimated from bioassays of chemical 1 and chemical 2, with test statistics estimated from PoloPlus [47] .
Pesticide Toxicity Assessment for Bee Species
For tests with a mixture, at least 5 doses of the mixture that bracketed 5–95% mortality were tested concurrently with experiments with at least 5 doses of individual mixture components. As before, 60–135 bees of each species were tested depending on species' availability. To test the hypothesis of independent joint action of fenbuconazole with acetamiprid or imidacloprid, we used the computer program PoloMix [49] . Assuming independent joint action of two mixture chemicals, test subjects can die of three possible causes. The first cause is natural mortality, with a probability po (a constant). The other two causes of mortality are the probabilities of mortalities for chemical 1 or chemical 2. For the first chemical, the probability of response (p1) is a function of dose D1. Usually, the probit or logit of dose X of chemical 1 is log(D1) (i.e., X1 = log[D1]). For the second chemical, the probability of response (p2) is a function of dose D2. If these three causes of mortality are independent, the probability of death (p) is p = p0+(1−p0)p1+(1−p0)(1−p1) p2. When each “+” sign means “or” and each product means “and,” this equation means that the total probability of death equals death from natural causes (p0), or no death from natural causes (1−p0) and death from the first chemical [e.g., (1−p0)p1], or no death from natural causes or from the first chemical [i.e., (1−p0)(1−p1)], but death from the second chemical [i.e., (1−p0)(1−p1) p2]. The χ2 statistic produced by PoloMix [49] was used to test the hypothesis of independent joint action. This test statistic is calculated by obtaining an estimate for the probability of mortality (p) for several dose levels of the two components and then comparing (the estimate of p) with the observed proportion killed at the corresponding dose levels. The three contributions to p are estimated separately. First, p0 is calculated as the proportional mortality observed in the control group. Next, p1 and p2 are estimated from bioassays of chemical 1 and chemical 2, with test statistics estimated from PoloPlus [47] .
Corresponding Organization :
Other organizations : Pennsylvania State University, US Forest Service, Xerces Society
Protocol cited in 4 other protocols
Variable analysis
- Pesticide doses
- Mortality of bees after 48 hours
- Control mortality (<5%, average 2.7%)
- Number of bees per replication (60-135 bees per species)
- Positive control: Water only
- Negative control: Not explicitly mentioned
Annotations
Based on most similar protocols
As authors may omit details in methods from publication, our AI will look for missing critical information across the 5 most similar protocols.
About PubCompare
Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.
We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.
However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.
Ready to get started?
Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required
Revolutionizing how scientists
search and build protocols!