Cells were plunge-frozen and then cryo-FIB milled using the method of Medeiros et al., 2018 (link), as follows. Immediately before plunge-freezing, mid-log phase (OD600~0.6) yeast cells were pelleted at 4000×g for 5 min. They were then resuspended in YPD media containing 3% (vol/vol) dimethyl sulfoxide as cryo-protectant to a final OD600 of approximately 2.5. Four µL of the cells were subsequently deposited onto Quantifoil R2/4 200 mesh copper grids (Quantifoil Micro Tools GmbH, Jena, Germany), which were then manually blotted from the back with Whatman Grade 1 filter paper for approximately 3–5 s. The grids were then plunged into a 63/37 propane/ethane mixture (Tivol et al., 2008 (link)) using a Vitrobot Mark IV (humidity: 100%, temperature: 4°C). Cryo-FIB milling was performed on a Helios NanoLab 600 DualBeam (Thermo Fisher Scientific, TFS, Waltham, MA, USA) equipped with a Quorum PolarPrep 2000 transfer system (Quorum Technologies, Laughton, UK). Plunge-frozen yeast samples were coated with a layer of organometallic platinum using the in-chamber gas injection system and the cold deposition method (Hayles et al., 2007 (link)). Cryolamellae were then generated as follows: bulk material was first removed using the FIB at 30 kV 2.8 nA, followed by successive thinning of the cryolamellae at lower currents of 0.28 nA and 48 pA.
Free full text: Click here