A linear compartmental model (Fig. 1) was used in this study, where u(t) represents plasma concentration of the tracer calculated by correcting PET-measured blood concentration for partial-volume effects and absence of uptake by blood cells. A recovery coefficient of 0.7 (18 (link)) and hematocrit of 50% (19 (link)) are assumed, resulting in a PET-measured whole-blood (WBPET)–to–actual plasma (Pa) tracer concentration ratio of CWBPET(t)CPa(t)0.7×0.5, for the 60-min dynamic scans, and CWBPET(t)CPa(t)0.5, for the 20-h postinjection scans, where partial-volume effects are not an issue because of low plasma concentration of tracer and comparable activity in myocardium. Spillover from the myocardium may slightly increase apparent tracer concentration at 20 h after injection; here we assumed spillover error is negligible. Compartments q1(t) and q2(t) represent the amount of free or nonspecifically bound and specifically bound tracer within tumor extravascular space, respectively. Several model structures could be used to describe the 20-h postinjection data point; here we assumed internalization is a linear process mediated by binding of ligand to receptor, thus, compartment q3(t) was added to represent tracer that has been irreversibly internalized by tumor cells (20 (link)). Model equations are written as dq1(t)dt=K1u(t)(k2+k3)q1(t)+k4q2(t) and dq2(t)dt=k3q1(t)(k4+kint)q2(t) and dq3(t)dt=kintq2(t), where, putatively, K1 represents the tracer extravasation rate (min−1), k2 represents the rate of tissue efflux of free or nonspecifically bound tracer (min−1), and k3 represents the rate of specific binding (min−1) of 64Cu-DOTA-RGD to the extracellular portion of the αvβ3 integrin. k4 and kint represent rates of dissociation (min−1) and internalization (min−1) of specifically bound tracer, respectively. Note that kint is assumed to represent internalization; however, all slow uptake mechanisms are lumped into this parameter. The measurement model is written as c(t)=VB×u(t)+q1(t)+q2(t)+q3(t), where VB is the fractional blood volume of the tumor (unitless) and c(t) is the tumor time–activity curve. Here we considered 4 structural perturbations of the model shown in Figure 1: a 2k model(k3 = k4 = 0) assumes PET data can be accurately described without explicitly accounting for the specific binding of 64Cu-DOTA-RGD to the αvβ3 integrin; a 3k model (k4 = 0) explicitly accounts for the specific binding of the tracer to integrin, which is assumed to be irreversible; a 4k model assumes reversible binding of tracer to integrin; and a 4kc (k4 = constant; k4 > 0) model assumes that k4 has approximately the same value across all datasets. Each of the 4 model variants is augmented with a compartment representing irreversible internalization of tracer by tumor cells (Eq. 5).