Antibodies used in the study.
Signaling proteins | No. | Antibodies |
---|---|---|
Cellular proliferation | 10 | Ki-67 |
cMyc/MAX/MAD signaling | 3 | cMyc*, MAX |
p53/Rb/E2F signaling | 5 (2) | p53, Rb-1#, E2F-1*, (p21, CDK4) |
Wnt/β-catenin signaling | 5 | Wnt1*, β-catenin*, APC*, snail*, TCF-1* |
Epigenetic modification | 6 | DMAP1 |
Protein translation signaling | 5 | DOHH |
RAS signaling | 17 | NRAS$, KRAS$, STAT3*, SOS-1 |
Growth factor signaling | 16 | FGF-1 |
NFkB signaling | 12 (3) | NFkB |
Upregulated inflammatory proteins | 26 (2) | IL-12 |
Downregulated inflammatory proteins | 13 (1) | TNFα@, IL-1 |
Cellular protection-related | 15 (2) | LC3, PLC- β2, PI3K, PKC |
Antioxidant-related | 8 (3) | HO-1 |
p53-mediated cellular apoptosis | 17 (1) | (p53*), PUMA |
FAS-mediated cellular apoptosis | 8 (3) | FASL |
Oncogenic proteins | 15 (2) | PTEN&, MUC1, MUC4, maspin*, BRCA1&, BRCA2&, NF-1 |
Angiogenesis-related proteins | 20 (7) | HIF&, VEGF-A |
Osteogenesis-related proteins | 12 (2) | OPG |
Control housekeeping proteins | 3 | α-tubulin*, β-actin |
Total | 216 (28) |
*Santa Cruz Biotechnology, USA; #DAKO, Denmark; $Neomarkers, CA, USA; @ZYMED, CA, USA; &Abcam, Cambridge, UK; the number of antibodies overlapped; ().
Abbreviations: AMPK; AMP-activated protein kinase, pAKT; v-akt murine thymoma viral oncogene homolog, p-Akt1/2/3 phosphorylated (p-Akt, Thr 308), APAF-1; apoptotic protease-activating factor 1, AP-1; activating protein-1, BAD; BCL2 associated death promoter, BAK; BCL2 antagonist/killer, BAX; BCL2 associated X, BCL-2; B-cell leukemia/lymphoma-2, BID; BH3 interacting-domain death agonist, c-caspase 3; cleaved-caspase 3, CD3; cluster of differentiation 3, CDK4; cyclin dependent kinase 4, CEA; carcinoembryonic antigen, CMG2: capillary morphogenesis protein 2, COX-1; cyclooxygenase-2, COX-2; cyclooxygenase-2, c-PARP; cleaved- PARP (poly-ADP ribose polymerase), DMAP1; DNA methyltransferase 1 associated protein, DMBT1; deleted in malignant brain tumors 1, DOHH; deoxyhypusine hydroxylase, DHS; deoxyhypusine synthase, E2F-1; transcription factor, eIF2AK3 (PERK); eukaryotic translation initiation factor 2 (protein kinase R (PKR)-like endoplasmic reticulum kinase), elF5A-1; eukaryotic translation initiation factor 5A-1, elF5A-2; eukaryotic translation initiation factor 5A-2, ERβ; estrogen receptor beta, ERK; extracellular signal-regulated protein kinases, ET-1: endothelin-1, FAS; CD95/Apo1, FASL; FAS ligand, FADD; FAS associated via death domain, FGF-1; fibroblast growth factor-1, FLIP; FLICE-like inhibitory protein, FLT-4; Fms-related tyrosine kinase 4, GADD45; growth arrest and DNA-damage-inducible 45, GAPDH; glyceraldehyde 3-phosphate dehydrogenase, GH; growth hormone, GHRH; growth hormone-releasing hormone, GST-1; glutathione S-transferase ω 1, HDAC-10; histone deacetylase 10, HIF-1α: hypoxia inducible factor-1α, HO-1; heme oxygenase 1, HER1; human epidermal growth factor receptor 1, HGFα; hepatocyte growth factor α, HSP-70; heat shock protein-70, IKK; ikappaB kinase, IGF-1; insulin-like growth factor 1, IGFIIR; insulin-like growth factor 2 receptor, IgK; immunoglobulin kappa (light chain), IL-1; interleukin-1, KDM4D; Lysine-specific demethylase 4D, JNK-1; Jun N-terminal protein kinase, KRAS; V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog, LC3; microtubule-associated protein 1 A/1B-light chain 3, LYVE-1: lymphatic vessel endothelial hyaluronan receptor 1, MAX; myc-associated factor X, MBD4; methyl-CpG-binding domain protein 4, M-CSF; macrophage colony-stimulating factor, MDM2; mouse double minute 2 homolog, MDR; multiple drug resistance, MMP-1; matrix metalloprotease-1, MPM2; mitotic protein monoclonal 2, mTOR; mammalian target of rapamycin, cMyc; V-myc myelocytomatosis viral oncogene homolog, NFkB; nuclear factor kappa-light-chain-enhancer of activated B cells, NOS-1; nitric oxide synthase 1, NRAS; neuroblastoma RAS Viral Oncogene homolog, NRF2; nuclear factor (erythroid-derived)-like 2, p14, p16, p21, p27, p38, PAI-1; plasminogen activator inhibitor-1, PARP; poly-ADP ribose polymerase, PCNA; proliferating cell nuclear antigen, PDGF-A: platelet-derived growth factor-A, PLC-β2; 1-phosphatidylinositol-4,5-bisphosphate phosphodiesterse β-2, PI3K; phosphatidylinositol-3-kinase, PLK4; polo like kinase 4 or serine/threonine-protein kinase, PKC; protein kinase C, p-p38; phosphor-p38, PTEN; phosphatase and tensin homolog, RANKL; receptor activator of nuclear factor kappa-B ligand, Rb-1; retinoblastoma-1, RUNX2; Runt-related transcription factor-2, SMAD4; mothers against decapentaplegic, drosophila homolog 4, SOD-1; superoxide dismutase-1, SP-1; specificity protein 1, STAT3; signal transducer and activator of transcription-3, TGF-β1; transforming growth factor-β1, TERT; human telomerase reverse transcriptase, TNFα; tumor necrosis factor-α, β-actin, 14-3-3, VEGF vascular endothelial growth factor, VEGFR2: vascular endothelial growth factor receptor 2, p-VEGFR2: vascular endothelial growth factor receptor 2 (Y951), vWF: von Willebrand factor.
The expressions of housekeeping proteins, that is, β-actin, α-tubulin, and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) were used as internal controls. Expressional changes of housekeeping proteins were adjusted to <±5% using a proportional basal line algorithm. To describe protein expressional changes, we tentatively defined a ≤±5% change as minimal, ±5–10% as slight, ±10–20% as meaningful, and a ≥±20% change as marked.