Because celloidin‐embedded tissue shrinks considerably and differentially in the rostro‐caudal, medio‐lateral, and dorso‐ventral dimensions, two Cartesian coordinate systems for the sections were produced. The first is a strictly physical coordinate system, corresponding to dimensions in the tissue sections themselves. The second is a stereotaxic coordinate system that ideally would be based on the dimensions of the brain within the skull of the intact, living animal. Fortunately, this brain was cut in virtually the same transverse plane as the stereotaxic rat brain atlas of Paxinos and Watson (1986), based on unembedded, frozen‐sectioned brains that suffered very little shrinkage. Because researchers have found the stereotaxic coordinates in Paxinos and Watson (1986) to be the best available, they were adopted for our brain as the second set of coordinates.
Photomicrographs of selected histological sections were obtained by placing the sections in an Omega enlarger with a point light source, projecting an image of the section onto a 4 × 5 inch sheet of Kodak Kodalith Ortho (2556) film, developing the film in Kodak Kodalith fine line developer, and printing with a Durst enlarger and Schneider Kreuzanch Componon‐S lens (f/150 mm) on 11 × 14 inch sheets of Kodak Kodabrome II RC paper, contrast grade F5. After 35 years, these thick celloidin sections are unsuitable for high resolution digital scanning because they are not completely flat and because the DPX has retracted in places, creating random “bubbles” of air between tissue section and coverslip. However, most areas of the sections remain suitable for microscopic examination.