Statistical analyses were performed using the Stata software (v15.1; College Station, TX, USA). Factors associated with candidemia and mortality were analyzed by using univariate and multivariate conditional logistic regression models. A backward stepwise logistic regression was used to select variables entered in the multivariate models, using a cutoff p value of 0.10. New scores to predict the risk of candidemia were developed for patients in and outside the ICU. Scores were obtained by rounding the β-coefficients. Receiving operating characteristic (ROC) curves were drawn using rocreg implemented in Stata®, after adjustment for matching covariates [32 (link)]. Test efficiencies were calculated using the dtroc softwares (Stata®). The best cutoff point was established according to standard methods (Youdden’s approach to determine the cutoff with the best compromise between sensitivity and specificity; the method of Zweig and Campbell, maximizing efficiency) [33 (link), 34 (link)] by using cutpt (Stata®).
Free full text: Click here