Primary efficacy analyses were performed in the mITT population according to randomised treatment assignment using LOCF to impute missing data; for participants who received rescue therapy, the last post-baseline value before rescue was used. Safety analyses were performed in the same population according to the predominant treatment received; in this study, the mITT and safety populations were identical. Only data from participants randomised to sitagliptin 100 mg on day 1 (i.e. not including participants who switched from placebo to sitagliptin at week 26) were included in efficacy comparisons at week 52. Safety analyses over 52 weeks included participants who received canagliflozin 100 mg or 300 mg or sitagliptin and those who switched from placebo to sitagliptin after 26 weeks (placebo/sitagliptin group).
An analysis of covariance (ANCOVA) model with treatment and stratification factor as fixed effects and corresponding baseline value as a covariate was used to assess primary and continuous secondary endpoints. Least squares (LS) mean differences between groups and two-sided 95% CIs were estimated. The categorical secondary endpoint was analysed with a logistic model with treatment and stratification factor as fixed effects and baseline HbA1c as a covariate. Assessment of non-inferiority of canagliflozin to sitagliptin was based on a pre-specified margin of 0.3% for the upper limit of the two-sided 95% CI for the comparison. If non-inferiority was demonstrated, then superiority was assessed based on an upper bound of the 95% CI around the between-group differences of <0.0%.
Comparisons were performed for canagliflozin vs placebo at week 26 and vs sitagliptin at week 52 based on pre-specified hierarchical testing sequences implemented to strongly control overall type I error due to multiplicity. At week 26, statistical tests were interpreted at a two-sided significance level of 5% for all endpoints except change in systolic BP, HDL-cholesterol and triacylglycerol. These were grouped together into two separate families (one each for canagliflozin 100 mg and 300 mg) and each family was tested using the Hochberg procedure at the 2.5% significance level. Comparisons of canagliflozin with sitagliptin at week 52 were initiated after statistical superiority of canagliflozin 100 mg and 300 mg to placebo in HbA1c lowering at week 26 was established; statistical tests at week 52 were interpreted at a two-sided significance level of 5% for all endpoints. The p values are reported for pre-specified comparisons only.