Erythrocytes produce lactate dehydrogenase (LDH), which may be measured photometrically using the LDH test kit/Lactate Dehydrogenase Assay Kit (Colorimetric) (ab102526) (50 (link)). For the LDH investigation, blood was obtained from the neighbouring blood bank. The erythrocyte suspension was made according to the methodology described in our earlier research. In 1mL of erythrocyte solution was treated with specific amount of Cabozantinib (CNB), PLGA-PSar-encapsulated Cabozantinib nanoparticles (CNB-PLGA-PSar-NPs), and placebo (PLGA-PSar-NPs) (51 (link)). Positive control sample was created by diluting erythrocyte suspension with 1% Triton-X-100, whereas negative control sample was created by diluting erythrocyte suspension with normal saline solution. LDH was generated spontaneously by incubating 150/UL Lactate dehydrogenase (LDH) with erythrocyte suspension at 37°C. During specific time intervals, such as 2h, 4h, and 8h after suspension, 400µL samples were taken and centrifuged for 20 minutes at 1345xg. LDH was detected at 500nm after a ready-to-use LDH solution was added to the supernatant. The total of LDH was calculated using the following formula.
Where, A sample stands for Cabozantinib, PLGA-PSar-encapsulated Cabozantinib nanoparticles (CNB-PLGA-PSar-NPs) incubated erythrocytes absorbance, A negative control indicates, erythrocytes absorbance of sample, which was pre-treated with normal saline solution. The A standard indicates the absorbance of erythrocytes sustention, which were pre-treated with 150/UL Lactate dehydrogenase (LDH) enzyme. The experiment was conducted in triplicate, and the results are presented as mean standard deviation (n=3). The RBC survival rate after nanoparticle injection is dependent on the erythrocyte membrane integrity test. Yuanyuan Guo et al. (52 (link)) created poly(d,l-lactide-co-glycolide) (PLGA) nanoplatforms for cancer immunotherapy with erythrocyte membrane encapsulation. With these formulations, cellular absorption in vitro was reportedly enhanced (52 (link)).
Free full text: Click here