All S. cerevisiae deletion strains were obtained from the Saccharomyces Genome Deletion Project collection [11] (link). All S. cerevisiae deletion strains were from the homozygous deletion collection (MATa/α his3Δ1/his3Δ1, leu2Δ0/leu2Δ0, lys2Δ0/LYS2, MET15/met15Δ0, ura3Δ0/ura3Δ0), with the exception of the Δsko1 strain, which was haploid (MATa his3Δ1, leu2Δ0, met15Δ0, ura3Δ0). In all cases where the S. cerevisiae strain exhibited a phenotype that appeared divergent from the C. albicans ortholog(s), the S. cerevisiae strain deletion was validated using the primers suggested by the Saccharomyces Genome Deletion Project protocols.
Comprehensive Candida albicans and Saccharomyces cerevisiae Deletion Libraries
All S. cerevisiae deletion strains were obtained from the Saccharomyces Genome Deletion Project collection [11] (link). All S. cerevisiae deletion strains were from the homozygous deletion collection (MATa/α his3Δ1/his3Δ1, leu2Δ0/leu2Δ0, lys2Δ0/LYS2, MET15/met15Δ0, ura3Δ0/ura3Δ0), with the exception of the Δsko1 strain, which was haploid (MATa his3Δ1, leu2Δ0, met15Δ0, ura3Δ0). In all cases where the S. cerevisiae strain exhibited a phenotype that appeared divergent from the C. albicans ortholog(s), the S. cerevisiae strain deletion was validated using the primers suggested by the Saccharomyces Genome Deletion Project protocols.
Protocol cited in 52 other protocols
Variable analysis
- Deletion of transcriptional regulators in C. albicans
- Deletion of genes in S. cerevisiae
- Phenotypic changes in C. albicans and S. cerevisiae strains
- Strain background of C. albicans deletion strains: arg4Δ/arg4Δ, leu2Δ/leu2Δ, his1Δ/his1Δ, URA3/ura3Δ, IRO1/iro1Δ, with HIS1 and LEU2 function restored
- Wild-type control strain for C. albicans created by reintroduction of a single allele of HIS1 and LEU2
- S. cerevisiae deletion strains from the homozygous deletion collection, except for Δsko1 which was haploid
- Wild-type control strain for C. albicans created by reintroduction of a single allele of HIS1 and LEU2
- None explicitly mentioned
Annotations
Based on most similar protocols
As authors may omit details in methods from publication, our AI will look for missing critical information across the 5 most similar protocols.
About PubCompare
Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.
We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.
However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.
Ready to get started?
Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required
Revolutionizing how scientists
search and build protocols!